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FLOW AND TEMPERATURE FIELDS AROUND A GAS
AND A VAPOUR BUBBLE

W.ZmL*
Laboratory for fluid dynamics and heat transfer, Department of technical physics, Eindhoven University of
Technology, The Netherlands
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Abstract—The global collocation method has been applied to potential and viscous flow fields around a
bubble. For a rotationally symmetric gas bubble, jet formation, initial acceleration, detachment from a
horizontal wall and the motion induced by a surface tension gradient have been studied. For a spherically
symmetric vapour bubble implosion and growth have been considered and the bubble radius and
temperature are found to oscillate. The computed results have been compared with available experimental
data. For a bubble surrounded by an infinitely extended liguid the global collocation method turns out to be

particularly useful.
NOMENCLATURE Ll ,
=k/pc, liquid thermal diffusivity M,
[m?/s]; n,
expansion coefficient, function of 4 and ¢; 0
expansion coefficient, function of A and t; o’
liquid specific heat at constant pressure
[J/kg-K]; N,
expansion coefficient, function of 4 and ¢;
expansion coefficient, function of L and t; P,
2o e Peos
=37 + —r~2—5‘;5 in spherical .
co-ordinates,
10 & B
= Frein + s in cylindrical P,
co-ordinates [m™?]; Q.
D* = D?D?, fourth order differential ‘
operator [m™*]; 7
expansion coefficient, function of A and 1;
2(N + 1)—dimensional vector function; R,
expansion coefficient, function of A and ¢;
strength of gravitational field [m/s?]; Ro,
modified Bessel function of the first kind
of order zero with argument x; t,
modified Bessel function of the first kind t,
of order one with argument x; T,
liquid thermal conductivity [W/m-K7;
arbitrary number < o0, u,
modified Bessel function of the second kind u,,
of order zero with argument x;
modified Bessel function of the second kind
of order one with argument x; ty,
latent heat of vaporization [J/kg];
height of a cylinder [m]; Uy,
non-linear differential operator;
ulr’
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radius of a cylinder [m];
number of collocation points minus one;
direction normal to the bubble surface;

=n-V, derivative in the direction of
n[m™1];

number of terms in a truncated series minus
one,;

liquid pressure [Pa];

liquid pressure for away from the bubble
[Pa];

liquid pressure on the bubble boundary
[Pa];

= v/a liquid Prandtl number;

Legendre function of order zero and degree
A with argument x;

Associated Legendre function of order zero
and degree 1;

radial co-ordinate in spherical and
cylindrical co-ordinates [m];

bubble radius in spherical and cylindrical
co-ordinates [m];

bubble radius for hemispherical bubbles
When 6x(t) = 0 [m];

time [s];

direction tangential to the bubble surface;
absolute boiling temperature at ambient
pressure p,, [K];

velocity vector [m/s];

velocity component in r-direction, both in
spherical and cylindrical co-ordinates
[m/s];

velocity component in {-direction, spherical
co-ordinates [m/s];

velocity component in z-direction,
cylindrical co-ordinates [m/s];

translation velocity of a bubble {m/s];
initial translation velocity [m/s];

volume of a gas bubble [m*];
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V,. initial volume of a gas bubble [m?*];
z, z-co-ordinate, cylindrical co-ordinates [m].
Greek symbols

¥, Poisson’s adiabatic constant of the gas;

3, thermal boundary-layer thickness [m];

L, azimuthal angle, spherical co-ordinates;

7 liquid dynamic viscosity [ Ns/m?];

0, absolute temperature minus T, superheating

(K}
8., superheating at the end of the thermal
boundary layer [K};
B,  superheating of the bubble boundary [K];
Ay complex exponent in a power series;
Hs = cos {;
v, == y/p, liquid kinematic viscosity [m?/s];

0 liquid density [kg/m>];

P2, gas or saturated vapour density [kg/m3];

o, surface tension coefficient [N/m];

> summation operator;

T, stress tensor [Pa];

Tpr = {r - n} - t, tangential stress component
on the bubble boundary [Pa];

Ty = (¢ - n) ' b, normal stress component on
the bubble boundary [Pa];

o, velocity potential in vortex-free flow
[mZ/s);

A stream function, in spherical co-ordinates
[m?3/s], in cylindrical co-ordinates
[m?/s]:

®, vorticity [s '] divided by r sin{ in
spherical co-ordinates [m ™! -s™'];

2
2 = P20 i( pa! ) , characteristic
p T a\pch,
frequency describing the transition between
initial and asymptotic vapour bubble
growth [s™'];
& 1é\. . .
v, ={ —,—— ] in spherical co-ordinates,
(Br r 5{)
= <~ y A—) in cylindrical co-ordinates
ar oz
[m™'];
,
Vi, =D+ g(«(— + f?ff_’ ! i) in spherical
r\or sinfraé
co-ordinates,= D? + - in cylindrical
co-ordinates [m %],
Subscripts

i, number of a collocation point;

k, number of a term in a series;

tr, translation;

R, on the bubble wall in the liquid;

A, complex subscript of an expansion
coefficient;

0, initial, at t = 0;

o0, far away from the bubble.

ZuL

Superscripts

differentiation with respect to the argument;
total differentiation with respect to time;
approximate value.

1. INTRODUCTION

THE BEHAVIOUR of bubbles has been the subject of
many investigations since direct contact between gas
and liquid often occurs in industrial processes, es-
pecially in two phase flow and boiling heat transfer.
For the qualitative understanding of the complex
physical phenomena involved, mathematical sim-
ulation is an indispensable tool. Theoretically spoken,
the gas in the bubbles and the surrounding liquid can
adequately be described by the Navier—Stokes equa-
tions and also the appropriate boundary conditions
can easily be formulated. So, with prescribed initial
conditions the evolution in time of the system is
defined. However, even for one bubble with uniform
interior and a laminar flow field around it, there is a
formidable lack of exact solutions, due both to the
non-linearities in the Navier—Stokes equations and to
the a priori unknown position and irregular shape of
the boundary.

So we are forced to use approximation methods. By
using the powerful method of uniform asymptotic
expansions, other approximation methods must be
applied to solve the resulting equations of the expan-
sion hierarchy. So it makes sense to consider numerical
approximation methods, i.e. methods which map the
space-time continuum into a discrete space-time
mesh.

Also the problems in numerical computation are
big. Modern high speed computers with large memory
capacity make certain problems more accessible to
numerical methods, but they do not give an answer to
questions like stability, convergence and error bounds.
A pragmatic approach is adopted here: the criterion of
computational efficiency has been used to choose the
global collocation method and the approximate re-
sults are justified by comparison with available expe-
rimental data.

All calculations were performed on a Burroughs
B6700; the computation time varied from 1 to 30 min.

2. MATHEMATICAL FORMULATION

Both the equations of motion for an incompressible
liquid surrounding one bubble and the necessary
auxiliary conditions are presented in spherical co-
ordinates, assuming rotational symmetry. The equa-
tions of motion of the gas in the bubble are assumed to
reduce to the condition that the pressure in the gas is
homogeneous.

It is of great advantage to satisfy the continuity
equation by the introduction of a stream function ¢, so

that;
1 1d @
— o W (1)
rsin{ r ol or

u={u,u)=
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The momentum equations in the r-and {-direction are:

n 10 ¢
Vi = -, —|D?
P+ pgreosd) rsinc( ror Br) v
-p| — — 4= —ju—p—(—u,u). @2
p(6t+ur6r+rﬁc>“ pr( g th). (2)

By taking the curl of equation (2), pressure and gravity
can be eliminated, resulting in the vorticity diffusion
equation (3) and a Poisson equation for y (4):

) 0 u 0 n .
p(w +u—+ 7" ?i)w =it D*(cr? sin® {), (3)

D = wr?sin? {. (4)

where w is the vorticity divided by r sin {,
Finally, neglecting viscous dissipation, the diffusion
equation for the thermal energy is:

P d u 0
A S PR 2 5
p C(a;“"ar , ag) ©)

In order to obtain a well-posed partial differential
problem, capable of predicting the evolution in time of
both the flow- and temperature fields around the
bubble and of the co-ordinates of the bubble wall, four
boundary conditions must be presented.

One condition for the normal stress and one con-
dition for the tangential stress for equations (3) and (4);
one condition for the temperature or heat flux for
equation (5) and one relation between the normal flow
velocity and the bubble wall displacement to describe
the position and shape of the bubble boundary.

For non-translating, nearly spherically symmetric
bubbles and for translating bubbles during a short
time after the onset of motion, the influence of the
tangential stress condition is restricted to a thin
boundary layer around the bubble, cf. Batchelor [1].

Outside this layer the solution of (3)and (4)isw = 0
and equation (4) can be used to define a velocity
potential ¢, so that:

u= V¢ ) (6)
Vi =0. N

For potential flow the momentum equations (2) can be
integrated, yielding the Bernoulli equation for the
pressure:

a
p+pgreos{ = —p(g; +%V¢»-V¢>)+pm(t). (8)

In the case of viscous flow, where inertia effects are
neglected, the equations (3, 4) reduce to:

DYy =0. 9
Since exact solutions of (9) are well known, the

pressure can easily be found by integration of (2),
neglecting the inertia terms. General solutions of
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equation (4} with » = Qarecf. Abramowitz and Stegun
(21:
Yir, [, t) = risin? {{4,(t)P; _ (cos ()

+B,(1)Q; - 1(cos )} . (10)
For solutions of equation (9) one has to add:
Wir, 4, 1) = r* sin? {{C,(1)P; _s(cos {)

+D;(1)Q; -slcos )} (11)
4;, B;, C,, D, are functions of ¢ depending on the
complex number 4, P,(i) and Q,{y) are Legendre
functions, respectively associated Legendre functions
of order zero and degree A. The prime means differen-
tiation with respect to the arguments.

If4i=04=1thenP;_,(u) =0;fi =2,%=3then

P, _4(¢) = 0; in these degenerate cases the following
independent solution must be added:

Wir,{, 1y = E;(t)cos (. (12)

3. THE GLOBAL COLLOCATION METHOD

In potential and viscous flow situations general
solutions for the stream function are known and these
solutions can be matched to the boundary conditions
by an appropriate choice of the expansion coefficients
A, {t), ... E, (1), of. Section 2.

In most cases this has to be done numerically by a
method of weighted residuals, cf. Finlayson [3]. For
reasons of computational efficiency the collocation
method is preferable. In this method the boundary is
discretized into a finite mesh of so called collocation
points and only there the boundary conditions are
applied. In this way a linear system of algebraic
equations is obtained.

Assume that a boundary condition has the following

form:
{L{ Y adt) filr, u)}] =0.
k=0 r=Ru,t)

Herein { fi(r, u)}%0 is the general solution and
{a, (1)} o are the coefficients to be fitted.

Applying collocation on the points {R(u; t), #;}-,
an approximate solution with a finite number of
expansion coefficients {a,(¢)}3- ¢ is obtained.

From interpolation theory it is known that:

H T alt) filr, m}

k=0

(13)

Fe= R 1)

X (B—po)lp—py) .. (= ). (u—py)
(N+1) )

<

(14)

Convergence for N — oo can be guaranteed if {s,}}.,
are the zeros of ultra spherical polynomials, e.g. the
Chebyshev and the Legendre polynomial, cf. Fox and
Parker [4].

For the diffusion equation (5) a general solution
cannot be given; in that case an appropriately chosen
trial function with adjustable coefficients is substituted
into the equation and boundary conditions. Now
collocation points in the whole temperature field are
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needed. In order to avoid ill conditioned matrices the
number of collocation points must be low, so the
solution has only a global character.

4. SPHERICALLY SYMMETRIC VAPOUR BUBBLES

In spherically symmetric flow fields the Bernoulli
equation (8), combined with the linearized Clapeyron
equation, cf. van Stralen [5] results in the Rayleigh
equation:

l
RR+3R2 =P 20— N2 . as)
pT
During growth the bubble fills up with vapour, which
requires evaporation of liquid at the bubble boundary.
The required heat flux is given by:

o0 .
(k _> = p,IR. (16)
or r=R

In order to solve the heat balance equation (5), with
heat flux requirement (16) as boundary condition, a
simple form of the collocation method is used.

The temperature in the thermal boundary layer
around the bubble is expanded in:

r—R(z)
O(r,t) = 0, +(Bx(t)—6,) exp| — , (17)
a(r)
herein 6x(¢) and (t) are the coefficients to be adjusted.
Substitution of (17) into (16) and into (5) on the
collocation point r = R(t) results in:

4 (0k=0\2 _2( pal oo
dt 0, a\pch,,

By taking the square root the negative sign must be
used and at the time where R changes sign 0y is made
discontinuously equal to 8, ; in this way the physically
unrealistic growth with increasing temperature and
implosion with decreasing temperature are avoided.

(18)

20

The coupled system of ordinary differential equa-
tions (15, 18) can be solved numerically, e.g. by a Runge
Kutta method. Figure 1 presents both computed and
experimental results for a growing bubble. It is noted
that the calculations are performed for an initially
uniformly superheated liquid, whereas the experiment
represents growth in a temperature gradient at a
superheated wall.

After a certain time of growth a stage is reached
where 0g(z) ~ 0 and inaccuracies in the computation
of 8 will lead to artificial oscillation or stagnation, as
can be seen from (15). Hence on that timescale another
procedure must be used. It has been shown by Scriven
[6] that for Og(t) = 0 the bubble has the following
growth rate:

Rolt) = 2<Pﬁ?£>(at)”2. (19)
pal
In order to incorporate the effect of inertia a linearized
solution of system (15, 18) can be found when R is
expanded in:

R(t) = Ry(t){1 +e(t)}, e« 1. (20)
Substitution of (20) into (15, 18) leads to:

E+3E+0i=0 for t»Q". 21)
0.1 pyl \?
Q:EEW—( Pl ) 22)
p T a\pcb,

An approximate solution of (21) is:
&(t) = Asin{2(Qr)*/*}. (23)

Physically, the oscillations are obtained as follows:
when the heat flux to the bubble is just enough for the
required heat of evaporation the bubble growth rate
equals Ry(t).

If for some reason the growth is more rapid, more

Water

25

—20
—15
e —{1c
—15
X
Po=2028 kPa o ©
T, =3334 K
8 =52 K
Jo =2039 K Ts
—-10
4]; _|5
25 30

F1G. 1. Experimental (&) and theoretical growth of a free
vapour bubble in water (8, = 8, = 14.6 K, p,, = 2672 kPa,
computation time 1 min).
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heat of evaporation is required and the temperature of
the liquid at the bubble boundary will decrease.
According to equation (15) a lower temperature will
decrease the growth rate, consequently less heat of
evaporation is required and the temperature increases.
Due to inertia the liquid velocity lags behind the
change in temperature and so oscillations occur.

The amplitude A depends on the induced distur-
bances, e.g. caused by neighbouring bubbles; the
discontinuity in fg, introduced to solve the system (15,
18), represents an artificial amplitude, but note that the
frequency agrees quantitatively with the experimen-
tally observed values. In (21, 23), the damping is not
well represented; in [7], Zijl gives arguments that the
damping may be represented by exp(—Qt). In-
troduction of an artificial amplitude, in such a way that
solution (20, 23) matches the solution for initial
isobaric growth, cf. Van Stralen [ 5], results in:

a 1/2
R(t) = {(at)”z -%(5) sin{2(Qn)1/2}

pcly,
pa2!

0t <.

>

+4{at)' 2 sin{2(Q1) "} &~ “’} 2

(24)

In the case that the Jakob number Ja = pc6,./p,1 < 1,
no thin thermal boundary layer exists. Now the
temperature is expanded in a polynomial in 1/r. The
choice of a parabola, collocated at r = R results in:
8g—8, 6, R

—22=.2

R? Ja R

g = —2a- 25)
Expression (25) represents a better approximation
than equation (18), since in (25) no discontinuity in the
temperature needs to be introduced and in the asymp-
totic stage t— oo, R ~ 1/t'2, Og ~ 1/, the solution
approaches the exact solution derived by Scriven [6].
In the same way as for the derivation of (24) the bubble
radius can be approximated by:

2 [ada 12 0n1?
R{t}:{(at} —(—ﬁ> sm{(-};—> }

1 2Q1\1? gL
+ —— Jasin{| — e 2Ja) 2Jq,
J(6) Ja

O0<t< 0. (26)

In Fig. 2, a cubic polynomial with collocation points
onr=R and r = R(1+0.01) is used to calculate an
imploding bubble, also experimental values are pre-
sented.

5. ROTATIONALLY SYMMETRIC GAS BUBBLES
From equations (10, 12) it can be concluded that the
solution of equation (6) with zero velocity in r — o
and without singularity in { = 0 has the following
form:

1
i)=Y (1) 57 Palcos §). @7

k=0
The co-ordinates of the bubble boundary r = R({, 1)
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FiG. 2. Experimental (A ) and theoretical implosion of a free
vapour bubble in water (8, = 6, = —~08K,p, = 16.52kPa,
computation time | min),

are also expanded in Legendre polynomials:

R 1) = Y b()Pylcos?). (28)
k=0

In order to apply the collocation method, the series (31,
32) are truncated after N+1 terms and also N+1
collocation angles {, are chosen. Hence, one has:

N
Rit) =R, 1) = 3 [Pulcos{)]bult),  (29)
k=0

st(t) = ¢’(Ri(t), Cis t) =

N 1 K+l
) [(*) Pyfcos Ci)]ak(t)~ (30)

k=0 L\R«()

With equation (8) the normal stress condition on the
bubble boundary can be derived, yielding:

¢ Pof Vo NV P
— = ~4Ve -Vp—gR _ef o) 4
ot Vo 94—gRoos! p(V(t)) " p

1 8R\2 2
1+ —— —i—‘?—ﬁ
o1 R & R &

pR o[ LOR Nz
{+la) )

1R cos¢

TR\
{H(E?}Z)} ES)
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direction of transiation
axis of symmetry

0 s, initial radius

— 89 s, rinimum radius

B, * 50 kPa
Py 200 kPa

F16. 3(a). Imploding phase of a translating gas bubble, hit by a pressure step (N+1 =7, po = 50kPa,
P = 200kPa, Ry = 1 mm, u,, = 0.2m/s, computation time 5 min}.

4 direction of transiation,

axis of symmetry
i
A

L. 178 ps maximum radius

50 kPa
200 kPa
1.0 mm
02 mst

Oy u b w

F1G. 3(b). Growing phase of the bubble from Fig. 3(a) (computation time 5 min}.
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§ direction of "ranslation
axis of sy'mmetry
1 /2
0 pus, initial radius
3
60 ps /‘1‘
.‘//é 73 pes, minimum radius ,
7NN\
’\\ ) :
“\\g 4’/’.
P G
\tongue formation g
po = 50 kPa
Pp =200 kPa
10 Ro = 1.0 mm
) Ures 0.2 ms!
13 12

F1G. 4. The bubble from Figs. 3(a), 3(b}), with N+ 1 = 13 (computation time 10 min).

e
2

Zo‘r-

e e ot .

RON, maximum U,

minimum

1, us
F1G. 5. Rg and U as a function of ¢ for the bubble of Figs. 3(a} and 5(b).

The condition that the normal flow velocity at the
bubble boundary equals the bubble wall velocity leads
to:

dR 0¢p 1 8¢ eR

% o RA
With equations {31, 32) a system of non-linear coupled
ordinary differential equations is derived:
(%) = (R, 650}
at\g,) »Pili=o05-

Numerically spoken the vector function F is a pro-
cedure in which {R,, ¢}, are evaluated from given

(32)

(33)

values of {R}, ¢;}}- , and for every timestep the matrix
equations (29, 30) have to be solved. Since these
matrices are full, the number of collocation points may
not be too high and special attention must be given to
the scaling of (30). The advantage of this method is that
for N+1 = 1 the system describes a spherically sym~
metric bubble.

With the methods described in Sections 4 and 5 also
the behaviour of a rotationally symmetric vapour
bubble can be described, this has been performed by
Joosten, Zijl and Van Stralen [8]. In the following
subsections a number of examples are given; the
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FiG. 6. Gas bubble in water, hit by a pressure step in a shock tube. (Pg = 75kPa, P, = 250kPa,
Ry = 1mm, U, = 0.04m/s).

collocation angles are chosen equidistantly in the
interval —4n < {; € 4.

5.1. Stable and unstable phases for a translating gas
bubble, hit by a pressure step

It is assumed that on ¢ = 0 a bubble is formed with
spherical shape, R, = 1 mm and internal pressure p,
= 50 kPa; at the same time the pressure in the liquid is
P = 200kPa.

The initial translation velocity U, = 0.2m/s and
gravity is neglected. The bubble will start to implode,

this is presented in Figs. 3(a) and 4. From Fig. 51t is
observed that an imploding bubble is accelerated.
During implosion a high pressure is built up in the gas
and after a certain time the bubble will start growing.
This phase is shown in Figs. 3(b) and 4 and it is seen
that formation of a liquid tongue at the rear of the
bubble occurs. In Fig. 5 it is shown that a growing
bubble is decelerated, a phenomenon which is also
important in calculations of the adherence time of a
vapour bubble, growing on a superheated wall. Figure
6 presents a measured bubble, generated in a shock
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 direction of translation,
axis of symmetry

1
0 s, initial radiu s

60 pus

| 85us

\‘
PN

y"

)

3

P
A
-

. ™~
\
b = 50 kPa
Py =200 kPa
jet formation Ry = 10 mm
r—’/ Uy 04 ms

FI1G. 7. Jet formation; the bubble of Figs. 3(a) and (b) but with an initial translation velocity Up = 0.4m/s
(computation time 20 min).

tube. In the instable growing phase the agreement is
only qualitative in predicting tongue formation, cf.
Section 5.2,

5.2. Jet formation at therear of a translating gas bubble,
hit by a pressure step
In the unstable situation small deviations from the
exact solution may blow up in time and the collocation
method is likely to fail. Nevertheless, Fig. 7 shows the
same gas bubble of 5.1, but now with an initial
translation velocity U, = 0.4 m/s, which is the cause
of jet formation. The result agrees qualitatively with
the observations of Fig. 6.

5.3. Initial acceleration of a gas bubble

Figure 8 shows a gas bubble which is formed on ¢
= Q without initial velocity, with radius R, = 1 cmina
gravitational field of g = 10 m/s%. From the calcu-
lations it follows that the initial acceleration equals
20m/s?> and after a longer time tongue formation
occurs. The results agree with those of Walters and
Davidson [9].

5.4. Adherence of a gas bubble at a smooth wall

Figure 9 shows a smooth wall and at :t = 0 both
above and beneath it a bubble of radius R, = 1 cm is
formed in a gravitational field with g = 10 m/s2 For ¢
> 0 contraction and smearing out is shown.

In order to obtain a zero normal velocity on the
fixed wall only even Legendre polynomials were used.

6. A SURFACE TENSION DRIVEN CAVITY

A gradient in surface tension gives rise to a tangen-
tial stress in the liquid adjacent to the bubble boun-
dary, in such a way that the liquid tends to move along
the boundary in the direction of the gradient, cf. Levich
[10], or:

t'm)t=—(Vo-t). (34)

The reasons for surface tension gradients may be
either gradients in temperature, gradients in con-
centration of surface substances, or the presence of a
varying electric charge on the interfacial layer between
gas and liquid.

In order to show the effect of boundary condition
(34) a rotationally symmetric gas bubble inside a
cylindrical cavity is considered, cf. Fig. 10.

The cylinder wall r = L, and the bubble boundary r
= R(z, t) are assumed to be adiabatic and the upper
wall has a higher temperature 0(r, 0, t) = 0, than the
lower wall, at which 6(r, Ly, t) = 0. In this way free
convection cannot occur and if gravity and excess
pressure effects are neglected motion is only induced
by a surface tension gradient.

A solution for viscous flow is presented. The equa-
tions of motion are reformulated for cylindrical co-
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F1c. 8. Initial acceleration of a gas bubble in the gravity field g = 10m/s, Ry = 1cm, Py = P, = 100kPa,
computation time (15 min).

ld:recticn of gravity \ - '
NPt
/ \
smooth wall

J
// / Ro = 10 mm
! / / g =10 ms2
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Fic. 9. Gas bubble on a wall in the gravity field g = 10m/s, Ry = lcm, Py = P, = 100kPa
496 {computation time 2 min},
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Fi1G. 10. Gas bubble and water in a heated cylinder (N +1
=5,M +1 = 11, computation time 2 min).

ordinates, yielding:

-G =+ (-2 D, )

u—(u,,uz)—-;(—‘a;,a“r) s
Dy =0. (36)
_n(_9 0\, 7
V(p+pgz)—;< az,ar)ow, 37)
V38 =0. (38)

The general solution of (38), satisfying the boundary
conditions at the heated upper and lower wall is:

o, z,t) = Z {Ak(t)lo(lk r)
k=1

+ By(t)K o (A7)} sin (A z) + (1 - Li>90 . (39)
0,

where

-k
ik - ‘n—“ .
L,
Determination of A,(z), B,(t) must be performed by
matching of solution (39, 40) to the boundary con-

(40)

dition 06/dn = 0 on the cylinder wallr = L, and on the
bubble boundary. This has been done by least squares
collocation, Series (39)is truncated after k = N and on
each wall M collocation points are chosen so that M
= N. Satisfying the boundary conditions on the 2M
collocation points results in 2M linear algebraic
equations for the 2N coefficients. Such a system can be
solved numerically with a least squares procedure.
Isotherms for N = 5 are presented in Fig. 10(a). After
having determined the temperature field the tangential
stress condition for (39, 40) is known (in water at
normal conditions do/df ~ —0.2 mN/m -K).

The general solution of (36), satisfying the condition
of zero normal velocity at the upper and lower wall is:

!//(r’ z, t) = Z {Ak(t)rll ()'kr)
k=1
+ B (O)rzl (A1) + Col(r I o( A7)
+ D ()rK (A )+ E (t)rzK (A1)
+ F(t)r* Ko (A7) sin(d,z) . (41)

From equation (37) the pressure can be determined as
a function of the expansion coefficients Ak(z),... F,(t)
and so the remaining boundary conditions can be
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satisfied by a suitable choice of these coefficients. This
has again been done by least squares collocation and
Fig. 10(b) presents the flow field around a prescribed
spherical bubble shape; it can be seen that the bubble
tends to flatten.

In contrast to the situation described in Section 5,
use of only one collocation point obviously produces
nonsense, whereas too much collocation points (here
N > 5} lead to numerically singular matrices. Due to
the fact that the pressure occurs explicitly in the
normal stress boundary condition, usual finite differ-
ence or element methods are hardly applicable. It
might be that local collocation with suitably chosen
splines is the right answer to such problems.
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Hydrodynamics,

APPROXIMATION OBTENUE PAR COLLOCATION GLOBALE DES CHAMPS DE VITESSE
ET DE TEMPERATURE AUTOUR D'UNE BULLE DE GAZ OU DE VAPEUR

Resume-—La méthode de collocation globale a été appliquée a I'étude des écoulements potentiels et
visqueux autour d’'une bulle. On a étudié, dans le cas d’'une bulle gazeuse i symétrie sphérique, la
formation du jet, I'accélération initiale, le détachement de la paroi horizontale et le mouvement induit
par un gradient de tension superficielle. Dans le cas d’une bulle de vapeur 4 symétrie sphérique, on a
étudié Fimplosion et la croissance, on trouve une variation oscillatoire du rayon et de la température
des bulles. Les résultats du calcul ont été comparés aux données expérimentales disponibles. Dans le
cas d’une bulle entourée d’un liquide s’étendant a I'infini la méthode de collocation globale se trouve
étre particuliérement utile.

NAHERUNGSWEISE BESTIMMUNG DES STROMUNGS- UND
TEMPERATURFELDES UM EINE GAS- UND EINE DAMPFBLASE MIT
HILFE DER METHODE DER GLOBALEN KOLLOKATION

Zusammenfassung— Die Methode der globalen Kollokation wurde auf Potentialstromungen und
Zihigkeitsstromungen um Blasen angewandt. Fiir eine rotationssymmetrische Gasblase wurde die
Strahlbildung, die Anfangsbeschleunigung, die Abldsung von einer horizontalen Wand und die durch
Oberfldchenspannungsgradienten hervorgerufene Stromung untersucht. Fiir eine kugelférmige Dampf-
blase wurde der Zerfalls- und Wachstumsvorgang betrachtet; sowohl beim Blasenradius wie bei der
Temperatur ergaben sich dabei Oszillationen. Die berechneten Werte wurden mit verfiigbaren
experimentellen Daten verglichen. Die Methode der globalen Kollokation erwies sich als besonders
niitzlich fiir eine Blase in einer unendlich ausgedehnten Fliissigkeit.

TJIOBAJIbHBIE KOJIJIOKALIMOHHBLIE ATITITPOKCUMALIMH
NOJIEW CKOPOCTEW TEUEHUWSA W TEMITEPATYPBI,
OKPYXARMWMUX MY3bIPEK 'A3A U NTAPA

AnHoramus — MeToa raoGankhbix KOMIOKAUMI MCNOJBIOBANCH A/ NOTEHUHANBHLIX H BI3IKHX
HOJEA CKOPDOCTH TEYeHMN BOKPYT My3bipbka, Korga nysplpek raisa sBIf€TCH TEJOM BPAILEHHS,
MCCIIeAOBATIACE 0Bpa3oBaHue CTPYH, HAYANBHOE YCKOPEHME, OTPHIB OT TOPH3OHTANBHON CTEHKM H
IBHXEHHE, BbI3BAHHOE [PALAMEHTOM IMOBEPXHOCTHOIrO HaTsxeHuA. s cepHueckoro ny3sipbka
mapa paccMaTPHBAINCL PA3PYIUCHHE M POCT My3bIpLKA ¥ HaHAEHO, YTO PaAHyC My3bipbKa M TeM-
nepaTypa HENOCTOAHHLI. Pe3ynbTaThl pacyeTa CPABHUBAIIMCH C HMEIOLUIMMUCS IKCNIEPHMEHTAIBHEIME
ZauHelMH. MeToa rnofansHbIX KOINoKausnit ocobenno yaobex as cayyas ny3blpbKa, OKpYXEHHOTO
HECKOHEHHO NPOCTHPAIOLIEHCH KHAKOCTRIO,



