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Abstract-The global collocation method has been applied to potential and viscous flow fields around a 
bubble. For a rotationally symmetric gas bubble, jet formation, initial acceleration, detachment from a 
horizontal wall and the motion induced by a surface tension gradient have been studied. For a spherically 
symmetric vapour bubble implosion and growth have been considered and the bubble radius and 
temperature are found to oscillate. The computed results have been compared with available experimental 
data. For a bubble surrounded by an infinitely extended liquid the global collocation method turns out to be 

particularly useful. 

NOMENCXATURE 

= k/p, liquid thermal diffusivity 
[m’/s]; 
expansion coefficient, function of 1 and t ; 
expansion coefficient, function of 11 and t; 
liquid specific heat at constant pressure 
[J/kg . K] ; 
expansion coefficient, function of I and t ; 
expansion coefficient, function of 1 and t; 

a2 l-p2 a2 =-++- 
ar2 r2 a$ 

in spherical 

co-ordinates, 

a2 1 a a2 
=$ - F ar + aZZ in cylindrical 

co-ordinates [m - “1; 
D4 = DtD2, fourth order differential 
operator Em-“]; 
expansion coehicient, function of 1 and t; 
2(N + l)-dimensional vector function; 
expansion coefficient, function of A and t; 
strength of gravitational field [m/s2]; 
modified Bessel function of the first kind 
of order zero with argument x; 
modified Bessel function of the first kind 
of order one with argument x; 
liquid thermal conductivity FW/rn. K]; 
arbitrary number < co ; 
modi~ed Bessel function of the second kind 
of order zero with argument x; 
modified Bessel function of the second kind 
of order one with argument x; 
latent heat of vaporization [J/kg]; 
height of a cylinder [m] ; 
non-linear differential operator; 
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radius of a cylinder [ml; 
number of collocation points minus one; 
direction normal to the bubble surface; 

= n. V, derivative in the direction of 
u [m-l]; 

number of terms in a truncated series minus 
one; 
liquid pressure [Pa]; 
liquid pressure for away from the bubble 
[Pal; 
liquid pressure on the bubble boundary 

[Pal ; 
= v/a liquid Prandtl number; 
Legendre function of order zero and degree 
I with argument x; 
Associated Legendre function of order zero 
and degree 1; 
radial co-ordinate in spherical and 
cylindrical co-ordinates [m] ; 
bubble radius in spherical and cylindrical 
co-ordinates [m]; 
bubble radius for hemispherical bubbles 
When e,(t) = 0 [m]; 
time [s]; 
direction tangential to the bubble surface; 
absolute boiling temperature at ambient 
pressure pa, [K]; 
velocity vector [m/s]; 
velocity com~nent in r-direction, both in 
spherical and cylindrical co-ordinates 
[m/s1 ; 
velocity component in [-direction, spherical 
co-ordinates [m/s]; 
velocity component in z-direction, 
cylindrical co-ordinates [m/s] ; 
translation velocity of a bubble [m/s]; 
initial translation velocity [m/s]; 
volume of a gas bubble [m”] ; 
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v,, initial volume of a gas bubble [m”]: 
% z-co-ordinate, cylindrical co-ordinates [mf. 

Greek symbols 

Poisson’s adiabatic constant of the gas; 
thermal boundary-layer thickness [m]; 
azimuthal angle, spherical co-ordinates; 
liquid dynamic viscosity [Ns/m’]; 
absolute temperature minus T, superheating 

EK3; 
superheating at the end of the thermal 
boundary layer [K] ; 
superheating of the bubble boundary [K]; 
complex exponent in a power series; 
= cos <; 
= v/p, liquid kinematic viscosity [m2/s]; 
liquid density rkg/m3J; 
gas or saturated vapour density [kg/m”]; 
surface tension coefficient [N/m] ; 
summation operator; 
stress tensor [Pa]; 
= (z . n) . t, tangential stress component 
on the bubble boundary [Pa]; 
= (Z II). 4 normal stress component on 
the bubble boundary [Pa] ; 
velocity potential in vortex-free flow 

[m’ls]; 
stream function, in spherical co-ordinates 
[m”/s], in cylindrical co-ordinates 
[m’js]; 
vorticity [s- ‘1 divided by r sini in 
spherical co-ordinates [m - ’ . s ‘1; 

characteristic 

frequency describing the transition between 
initial and asymptotic vapour bubble 
growth [s- ‘I; 

in spherical co-ordinates, 

‘6 (?-, 
= 

i ! & ’ C; in cylindrical co-ordinates 

[m-Y; 

co-ordinates, = D2 + - - in cylindrical 
r ijr 

co-ordinates [m-*1. 

Subscripts 

;1, 
number of a collocation point; 
number of a term in a series; 

tr, translation; 

R, on the bubble wall in the liquid; 

j-3 complex subscript of an expansion 
coefficient ; 

0. initial, at t = 0; 

a, far away from the bubble. 

Superscripts 

differentiation with respect to the argument; 
total differentiation with respect to time; 
approximate value. 

1. INTRODUCTION 

THE BEHAVIOUR of bubbles has been the subject of 
many investigations since direct contact between gas 
and liquid often occurs in industrial processes, es- 
pecially in two phase flow and boiling heat transfer. 
For the qualitative understanding of the complex 
physical phenomena involved, mathematical sim- 
ulation is an indispensable tool. Theoretically spoken, 
the gas in the bubbles and the surrounding liquid can 
adequately be described by the Navier-Stokes equa- 
tions and also the appropriate boundary conditions 
can easily be formulated. So, with prescribed initial 
conditions the evolution in time of the system is 
defined. However, even for one bubble with u~orm 
interior and a laminar flow field around it, there is a 
formidable lack of exact solutions, due both to the 
non-linearities in the Navier-Stokes equations and to 
the u priori unknown position and irregular shape of 
the boundary. 

So we are forced to use approximation methods. By 
using the powerful method of uniform asymptotic 
expansions, other approximation methods must be 
applied to solve the resulting equations of the expan- 
sion hierarchy. So it makes sense to consider numerical 
approximation methods, i.e. methods which map the 
space-time continuum into a discrete space-time 
mesh. 

Also the problems in numerical computation are 
big. Modern high speed computers with large memory 
capacity make certain problems more accessible to 
numerical methods, but they do not give an answer to 
questions like stability, convergence and error bounds. 
A pragmatic approach is adopted here: the criterion of 
computational efficiency has been used to choose the 
global collocation method and the approximate re- 
sults are justified by comparison with available expe- 
rimental data. 

All calculations were performed on a Burroughs 
B6700; the computation time varied from 1 to 30 min. 

2. MATHEMATICAL FORMULATION 

Both the equations of motion for an incompressible 
liquid surrounding one bubble and the necessary 
auxiliary conditions are presented in spherical co- 
ordinates, assuming rotational symmetry. The equa- 
tions of motion of the gas in the bubble are assumed to 
reduce to the condition that the pressure in the gas is 
homogeneous. 

It is of great advantage to satisfy the continuity 
equation by the introduction of a stream function I(/, so 
that; 
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The momentum equations in the r-and c-direction are: 

v(P -t pgr COS i) = -&( - ;+*$)W . 

-p (2) 

By taking the curl of equation (2) pressure and gravity 
can be eliminated, resulting in the vorticity diffusion 
equation (3) and a Poisson equation for + (4): 

( a a uca _+-- (jj= 

p dt+"rar r ai ) & WU~’ sin’ 01 (3) 

D2$ = wr2 sin’ <. (4) 

where u is the vorticity divided by r sin 5. 
Finally, neglecting viscous dissipation, the diffusion 

equation for the thermal energy is: 

(5) 

In order to obtain a well-posed partial differential 
problem, capable of predicting the evolution in time of 
both the flow- and temperature fields around the 
bubble and of the co-ordinates of the bubble wall, four 
boundary conditions must be presented. 

One condition for the normal stress and one con- 
dition for the tangential stress for equations (3) and (4); 
one condition for the temperature or heat flux for 
equation (5) and one relation between the normal flow 
velocity and the bubble wall displacement to describe 
the position and shape of the bubble boundary. 

For non-translating, nearly spherically symmetric 
bubbles and for tr~slating bubbles during a short 
time after the onset of motion, the influence of the 
tangential stress condition is restricted to a thin 
boundary layer around the bubble, cf. Batchelor [l]. 

Outside this layer the solution of (3) and (4) is w = 0 
and equation (4) can be used to define a velocity 
potential 4, so that: 

u=vt$, (6) 

v2c#J = 0. (7) 

For potential flow the momentum equations (2) can be 
integrated, yielding the Bernoulli equation for the 
pressure: 

P+iwcosi= -p !g+w.v+ ( 1 +p,(t). (8) 

In the case of viscous flow, where inertia effects are 
neglected, the equations (3,4) reduce to: 

D4$=0. (9) 

Since exact solutions of (9) are well known, the 
pressure can easily be found by integration of (2), 
neglecting the inertia terms. General solutions of 

equation (4) with w = 0 are cf. Abramowitz and Stegun 

!?I: 
$(r, [, t) = ti sin2 [{A,(t)P;_,(cos i) 

+ B,G)Q;-,bs <I}. (10) 
For solutions of equation (9) one has to add: 

+(r, [, t) = rA sin’ cjC,(t)P; -3(cos 5) 

+4WQ;-&0si)~. (11) 
6, B,, C,, D, are functions of t de~nding on the 
complex number A, PI(g) ‘and Q,&) are Legendre 
functions, respectively associated Legendre functions 
of order zero and degree 2. The prime means differen- 
tiation with respect to the arguments. 

If,%=O,J= lthenP;_,(~)=O;fX=2,~=3then 
P;_,(p) = 0; in these degenerate cases the following 
independent solution must be added : 

$(r, i, t) = E,(t) cos i . (12) 

3. THE GLOBAL COLLOCATION METHOD 

In potential and viscous flow situations general 
solutions for the stream function are known and these 
solutions can be matched to the boundary conditions 
by an appropriate choice of the expansion coefficients 

A,@), . . . E,(t), cf. Section 2. 
In most cases this has to be done numerically by a 

method of weighted residuals, cf. Finlayson [3]. For 
reasons of computational efficiency the collocation 
method is preferable. In this method the boundary is 
discretized into a finite mesh of so called collocation 
points and only there the boundary conditions are 
applied. In this way a linear system of algebraic 
equations is obtained. 

Assume that a boundary condition has the following 
form: 

=o. 03) 
r=R@l.t) 

Herein {fk(r,p)}Fzo is the genera1 solution and 
{ak(t)}k”,o are the coefficients to be fitted. 

Applying collocation on the points {R(pi, t), pi}~zO, 
an approximate solution with a finite number of 
expansion coefficients { &&)I,“= o is obtained. 

From interpolation theory it is known that: 

r=R((c.r) 

< I(. (,r_llO)~_~l!...(tr_Pi)...(lr_~,), (f4) 

(N+l)! 

Convergence for N -+ co can be guaranteed if {a)yZo 
are the zeros of ultra spherical polynomials, e.g. the 
Chebyshev and the Legendre polynomial, cf. Fox and 
Parker [4]. 

For the diffusion equation (5) a general solution 
cannot be given; in that case an appropriately chosen 
trial function with adjustable coefficients is substituted 
into the equation and boundary conditions. Now 
collocation points in the whole tem~rature field are 
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needed. In order to avoid ill conditioned matrices the 
number of collocation points must be low, so the 
solution has only a global character. 

4. SPHERICALLY SYMMETRIC VAPOUR BUBBLES 

In spherically symmetric flow fields the Bernoulli 
equation (S), combined with the linearized Clapeyron 
equation, cf. van Stralen [5] results in the Rayleigh 
equation: 

4rl k R#+$k2 =!$&-?f.&-R. (15) 

During growth the bubble fills up with vapour, which 
requires evaporation of liquid at the bubble boundary. 
The required heat flux is given by: 

(16) 

The coupled system of ordinary differential equa- 
tions (15,18) can be solved numerically, e.g. by a Runge 
Kutta method. Figure 1 presents both computed and 
experimental results for a growing bubble. It is noted 
that the calculations are performed for an initially 
uniformly superheated liquid, whereas the experiment 
represents growth in a temperature gradient at a 
superheated wall. 

After a certain time of growth a stage is reached 
where 0,(t) = 0 and inaccuracies in the computation 
of OR will lead to artificial oscillation or stagnation, as 
can be seen from (15). Hence on that timescale another 
procedure must be used. It has been shown by Striven 
[6] that for 0,(t) = 0 the bubble has the following 
growth rate: 

R,(t) = 2 (atp2. 

In order to solve the heat balance equation (S), with 
heat flux requirement (16) as boundary condition, a 

In order to incorporate the effect of inertia a linearized 

simple form of the collocation method is used. 
solution of system (15, 18) can be found when R is 

The temperature in the thermal boundary layer 
expanded in : 

around the bubble is expanded in: R(t) = R,(t){ 1 -t&(t)), [E(t)1 << 1 (20) 

R(r,r)=O,+(O,(r)-O,)exp(-%), (17) 
Substitution of (20) into (15, 18) leads to: 

tB+$+CE = 0 for 1>> R-‘. (21) 

herein 6,(t) and b(t) are the coefficients to be adjusted. 
Substitution of (17) into (16) and into (5) on the (22) 

collocation point r F R(t) results in : 

$(Fr = ;($rk’. 

An approximate solution of (21) is: 

(18) c(t) = A sin{2(Qt)“‘). (23) 

By taking the square root the negative sign must be Physically, the oscillations are obtained as follows: 
used and at the time where R changes sign 0, is made when the heat flux to the bubble is just enough for the 
discontinuously equal to 13~ ; in this way the physically required heat of evaporation the bubble growth rate 
unrealistic growth with increasing temperature and equals R,(t). 

implosion with decreasing temperature are avoided. If for some reason the growth is more rapid, more 

Water 
-20 

- 15 

-I5 
Y 

P, =20.28 kPa -_o 
co& 

r, -333.4 K 
e, -15.2 K 
J, =x)3.9 K --5 

1 -10 

I I I I 
0 5 IO 15 

-15 
20 25 30 

FIG. 1. Experimental (A) and theoretical growth of a free 
vapour bubble in water (0, = B0 = 14.6 K, pm = 26.72 kPa, 

computation time 1 min). 
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heat of evaporation is required and the temperature of 
the liquid at the bubble boundary will decrease. 
According to equation (15) a lower temperature will 
decrease the growth rate, consequently less heat of 
evaporation is required and the temperature increases. 
Due to inertia the liquid velocity lags behind the 
change in temperature and so oscillations occur. 

The amplitude A depends on the induced distur- 
bances, e.g. caused by neighbou~ng bubbles; the 
discontinuity in t3,, introduced to solve the system (15, 
18), represents an artificial amplitude, but note that the 
frequency agrees quantitatively with the experimen- 
tally observed values. In (21, 23), the damping is not 
well represented; in [7], Zijl gives arguments that the 
damping may be represented by exp( -at). In- 
troduction of an artificial amplitude, in such a way that 
solution (20, 23) matches the solution for initial 
isobaric growth, cf. Van Stralen [5], results in: 

+&at)‘/* sin{2(Qt)‘+ e-” 
1 

PC@, 
12 - 

P2l ’ 

0 < t < cc. (24) 

In the case that the Jakob number Ja = pc6,/p2 1-e 1, 
no thin thermal boundary layer exists. Now the 
temperature is expanded in a polynomial in l/r. The 
choice of a parabola, collocated at I = R results in: 

Expression (25) represents a better approximation 
than equation (18), since in (25) no discontinuity in the 
temperature needs to be introduced and in the asymp 
totic stage t + 00, k - l/t1’2, f& N l/t, the solution 
approaches the exact solution derived by Striven [6J. 
In the same way as for the derivation of (24) the bubble 
radius can be approximated by: 

O< t < co. (26) 

In Fig. 2, a cubic polynomial with collocation points 
on I = R and I = R(l +O.Ol) is used to calculate an 
imploding bubble, also experimental values are pre- 
sented. 

5. ROTATIONALLY SYMMEI’RIC GAS BUBBLES 

From equations (10,12) it can be concluded that the 
solution of equation (6) with zero velocity in r + co 
and without singularity in [ = 0 has the following 
form : 

&I, L t) = f a,(t) -& P&OS i) * (27) 
k=0 

The co-ordinates of the bubble boundary r = R(<, t) 

P = 16.52 kFQ 

E 

lf 

FIG. 2. Experimental (& and theoretical implosion of a free 
vapour bubble in water (6, = &, = -0.8 K, pm = 16.52 kPa, 

computation time 1 min). 

are also expanded in Legendre ~lynomials: 

RK, t) = : UM’&os 0. 
k=O 

cw 

In order to apply the collocation method, the series (31, 
32) are truncated after N + 1 terms and also N+ 1 
collocation angles C, are chosen. Hence, one has: 

&(t) = R(ie t) = i [P,(Cos ii)]&(r) 9 (29) 
k=O 

A+1 

pk(cos ‘tii) ak@)* 1 c30) 

With equation (8) the normal stress condition on the 
bubble boundary can be derived, yielding : 



direction of translatmn 
axis of symmetry 

FIG. 3(a). ImpiodiRg phase of a translating gas bubble, hit by a pressure step (N+l = 7, po = SOkPa, 
pK, = 200 kFa, R. = I mm, us,,, = 0.2 m/s, computation time 5 min). 

direction of translation, 
axgs of symmetry 

-_i 

t 
/ 2 

j79&_sS maximum radius _-. - ..- ..“..-.-- 

PO - 50 kPa 

Pm =200 kPa 

FIG. 3(b). Growing phase of the bubhfe from Fig. 3(a) (computation time 5 min). 
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P, i 50 kPa 
pm 3200 kPa 

R, L 1.0 mm 

utr,g 0.2 Ins-’ 

FIG. 4. The bubble from Figs. 3(a), 3(b), with N + 1 = 13 (computation time 10 min). 

t I I I I I I 
0 25 50 75 loo 125 150 175 

t, @ 

FIG. 5. R. and I/ as a function oft for the bubble of Figs. 3(a) and 5(b). 

The condition that the normal flow velocity at the 
bubble boundary equals the bubble wall velocity leads 
to: 

aR ad, 1 ad,azt -=-----_. 
at dr ~2 a5 ac (32) 

With equations (31,32) a system of non-linear coupled 
ordinary differential equations is derived: 

(33) 

Numerically spoken the vector function F is a pro- 
cedure in which (I$, &&, are evaluated from given 

values of { Rj, (oj}yc o and for every timestep the matrix 
equations (29, 30) have to be solved. Since these 
matrices are full, the number of collocation points may 
not be too high and special attention must be given to 
the scaling of (30). The advantage of thisme~hod is that 
for N + 1 = 1 the system describes a spherically sym- 
metric bubble. 

With the methods described in Sections 4 and 5 also 
the behaviour of a rotationally symmetric vapour 
bubble can be described, this has been performed by 
Joosten, Zijl and Van Stralen [S]. In the following 
subsections a number of examples are given; the 
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FE. 6. Gas bubble in water, hit by a pressure step in a shock tube. (PO = 75 kPa, P li = 250 k Pa, 
R. = 1 mm, U,,;, = 0.04 m/s). 

collocation angles are chosen equidistantly in the 
interval - +7t < ii G +r. 

5.1. Stable and unstable phases for a translating gas 
bubble, hit by a pressure step 

It is assumed that on E = 0 a bubble is formed with 
spherical shape, R,, = I mm and internal pressure p0 
= 50 kPa; at the same time the pressure in the liquid is 
pm = 200 kPa. 

The initial translation velocity U,, = 0.2 m/s and 
gravity is neglected. The bubble will start to implode, 

this is presented in Figs. 3(a) and 4. From Fig. 5 it is 
observed that an imploding bubble is accelerated. 
During implosion a high pressure is built up in the gas 
and after a certain time the bubble will start growing. 
This phase is shown in Figs. 3(b) and 4 and it is seen 
that formation of a liquid tongue at the rear of the 
bubble occurs. In Fig. 5 it is shown that a growing 
bubble is decelerated, a phenomenon which is also 
important in calculations of the adherence time of a 
vapour bubble, growing on a superheated wall. Figure 
6 presents a measured bubble, generated in a shock 
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dir&m of translation, 
axis of symmetry , 
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FIG. 7. Jet formation; the bubble of Figs. 3(a) and (b) but with an initial translation velocity UO = 0.4m/s 
(computation time 20 min). 

tube. In the instable growing phase the agreement is In order to obtain a zero normal velocity on the 
only qualitative in predicting tongue formation, cf. fixed wall only even Legendre polynomials were used. 
Section 5.2. 

6. A SURFACE TENSION DRIVEN CAVITY 

5.2. Jetformation at the rear of a translating gas bubble, 
hit by a pressure step 

In the unstable situation small deviations from the 
exact solution may blow up in time and the collocation 
method is likely to fail. Nevertheless, Fig. 7 shows the 
same gas bubble of 5.1, but now with an initial 
translation velocity U,, = 0.4 m/s, which is the cause 
of jet formation. The result agrees qualitatively with 
the observations of Fig. 6. 

5.3. Initial acceleration of a gas bubble 
Figure 8 shows a gas bubble which is formed on t 

= 0 without initial velocity, with radius R, = 1 cm in a 
gravitational field of g = 10 m/s’. From the calcu- 
lations it follows that the initial acceleration equals 
20m/s2 and after a longer time tongue formation 
occurs. The results agree with those of Walters and 
Davidson [9]. 

5.4. Adherence of a gas bubble at a smooth wall 
Figure 9 shows a smooth wall and at t = 0 both 

above and beneath it a bubble of radius R0 = 1 cm is 
formed in a gravitational field with g = 10 m/s’. For t 
> 0 contraction and smearing out is shown. 

A gradient in surface tension gives rise to a tangen- 
tial stress in the liquid adjacent to the bubble boun- 
dary, in such a way that the liquid tends to move along 
the boundary in the direction of the gradient, cf. Levich 
[lo], or: 

(r.n).t= -(Va.t). (34) 

The reasons for surface tension gradients may be 
either gradients in temperature, gradients in con- 
centration of surface substances, or the presence of a 
varying electric charge on the interfacial layer between 
gas and liquid. 

In order to show the effect of boundary condition 
(34) a rotationally symmetric gas bubble inside a 
cylindrical cavity is considered, cf. Fig. 10. 

The cylinder wall r = L, and the bubble boundary r 
= R(z, t) are assumed to be adiabatic and the upper 
wall has a higher temperature e(r, 0, t) = B0 than the 
lower wall, at which 0(r, I+, t) = 0. In this way free 
convection cannot occur and if gravity and excess 
pressure effects are neglected motion is only induced 
by a surface tension gradient. 

A solution for viscous flow is presented. The equa- 
tions of motion are reformulated for cylindrical co- 



1 

\ 

I 
dtrcction of gravity 

\ \ 

1 0 ms,initial radius’ 

FIG. 8. Initial acceleration of a gas bubble in the gr&ity field 9 = 10 m/s, R0 = 1 cm, PO = P, = to0 kPa, 
computation time (15 min). 

drrection of gravity 

FIG. 9. Gas bubble on a wall in the gravity field 9 = lOm/s, R. = 1 cm, PO = P, = lOOkPa 
(computation time 2 min). 
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I lxls of rotatatiorul symmetry 

I LI =2mm 

i- 
-1 

flow pattern 

FIG. 10. Gas bubble and water in a heated cylinder (N + 1 
= 5, M + 1 = 11, computation time 2 min). 

ordinates, yielding: 

a a 
ll = (u,,t&) = 1 - - - ( > az'ar 

JI, (35) 
r 

D4$ = 0. (36) 

v@+pgz)=f (37) 

V%=O. (38) 

The general solution of (38), satisfying the boundary 
conditions at the heated upper and lower wall is: 

W, z, t) = f (dkW0@krJ 
k=l 

8,) (39) 

where 

i”ZF. 
0 

w 
Determination of Al,(t), B,(t) must be performed by 
matching of solution (39. 40) to the boundarv con- 

From equation (37) the pressure can be determined as 
a function of the expansion coefficients Ak(t), . . . F,(t) 

., I d 
and so the remaining boundary conditions can be 

dition atIji?n = 0 on the cylinder wall r = L, and on the 
bubble boundary. This has been done by least squares 
collocation. Series (39) is truncated after k = N and on 

each wall M collocation points are chosen so that M 
>, N. Satisfying the boundary conditions on the 2M 
collocation points results in 2M linear algebraic 
equations for the 2N coefficients. Such a system can be 
solved numerically with a least squares procedure. 
Isotherms for N = 5 are presented in Fig. 10(a). After 
having determined the temperature field the tangential 
s!ress condition for (39, 40) is known (in water at 
normal conditions da/d0 * - 0.2 mN/m . K). 

The general solution of (36), satisfying the condition 
of zero normal velocity at the upper and lower wall is: 

$(r, z, t) = f (Ak(t)rll @kr) 

k=l 

+Bk(t)rdl(Akr)+ Ck(t)r2~O(&r) 

+Dk(t)rK,(lkr)+Ek(t)rzK,(akr) 

+Fk(t)rZKo(IZkr)j sin(l,z). (41) 
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satisfied by a suitable choice of these coefficients. This 
has again been done by least squares collocation and 
Fig. 10(b) presents the flow field around a prescribed 
spherical bubble shape; it can be seen that the bubble 
tends to flatten. 

In contrast to the situation described in Section 5, 
use of only one collocation point obviously produces 
nonsense, whereas too much collocation points (here 
N > 5) lead to nurne~~ai~y singular matrices. Due to 
the fact that the pressure occurs explicitly in the 
normal stress boundary condition, usual finite differ- 
ence or element methods are hardly applicable. It 
might be that local collocation with suitably chosen 
spiines is the right answer to such problems. 
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APPROXIMATION OBTENUE PAR COLLOCATION GLOBALE DES CHAMPS DE VITESSE 
ET DE TEMPERATURE AUTOUR DUNE BULLE DE GA2 OU DE VAPEUR 

R&urn&La methode de collocation gfobale a ete appliquee a i’etude des ecoulements potentiels et 
visqueux autour dune bulle. On a etudie, dans le cas d’une bulte gazeuse a symetrie spherique, la 
formation du jet, I’acceltration initiale, Ie d~tachement de la paroi horizontaie et le mouvement induit 
par un gradient de tension superficielle. Dans le cas d’une bulle de vapeur a symetrie sphtrique, on a 
etudit l’implosion et la croissance, on trouve une variation oscillatoire du rayon et de la temperature 
des bulles. Les resultats du calcul ont tte compares aux donnees experimentales disponibles. Dans le 
cas d’une bulle entouree d’un liquide s’etendant a l’infini la methode de collocation globale se trouve 

&tre particulierement utile. 

N~HERUNGSW~IS~ BESTIMMUNG DES STRGMUNGS- UND 
TEMPERATURFELDES UM EINE GAS- UND EINE DAMPFBLASE MIT 

HILFE DER METHODE DER GLOBALEN KOLLOKATION 

ZtLPammefffassang-Die Methode der globalen Kollokation wurde auf Potentialstromungen und 
Zahigkeitsstromungen urn Blasen angewandt. Ft.& eine rotationssymmetrische Gasblase wurde die 
StrahlbiIdung, die Anfangsbeschleunigung, die Abliisung von einer horizontalen Wand und die durch 
Oberflachenspannungsgradienten hervorgerufene Striimung untersucht. Fur eine kugelformige Dampf- 
blase wurde der Zerfalls- und Wachstumsvorgang betrachtet; sowohl beim Blasenradius wie bei der 
Temperatur ergaben sich dabei Oszillationen. Die berechneten Werte wurden mit verfiigbaren 
experimentellen Daten verglichen. Die Methode der globalen Kollokation erwies sich als besonders 

niitzlich filr eine Blase in einer unendlich ausgedehnten Fliissigkeit. 

L-ROBAflbHblE KO,~J~O~A~~OHHbiE A~RPOKC~MA~~~ 
IlOflEM CKOPOCTEM TEYEHMFI M TEMflEPATYPbl. 

OKPYXAfOUlMX flY3blPEK fA3A M HAPA 

&llOTiWlfl - MeTon rno6anbHblx KOJl~OKaUM~ llCIlOJlb30BENlCR LLnn IlOTeHUWaJlbHbIX H BJIJKWX 

IIOJlCii CKOPOCTH TVRHHR BOKPYr lly3blpbKa. KOrRa Ily3bl~K ES38 IlBJIRCTCIl TCJIOM BpallJeHlfSl, 

HCCJlelOBZLWiCb 06pa3OBaHii.Z’ CTPYH, Ha’lanbHOe YCKOPCHAC, OTpblB OT rOPH30HTaJIbHO~ CTCHKA Ii 

IIBHWZHJiC, Bb13BaHHOe I-pWU4teHTOM IIOBCpXHOCTHOrO HaTflXEHWI. )&IS C@EZpHW?CKOl-0 lly3bIpbKa 

IIapa paCCMaTpHBWlFlCb piS3pyUICHWZ W POCT lly3blpbKa El Hati&?HO, ‘IT0 PWUYC Ily3blpbKa A TeM- 

nC&?aTypa HCllOCTORHHbl. hyJIbTaTb1 j3aC’iCTi-t CpaBHHBilJKHCb C HMfSOlUHM%iCX 3KCIlepflMt!HTaRbHbIMH 

EiHHbIMH. MeToiI rIIO6mbHbIX KOJIJIOKaUllk OCO6CHHO y,llOljeH llirrr CnyWR lZy3btpbKa, OKpj’XceHHOrO 

6CCKOHC%HO npOCT~pa~~e~C~ HCHIIKOCTbK). 


